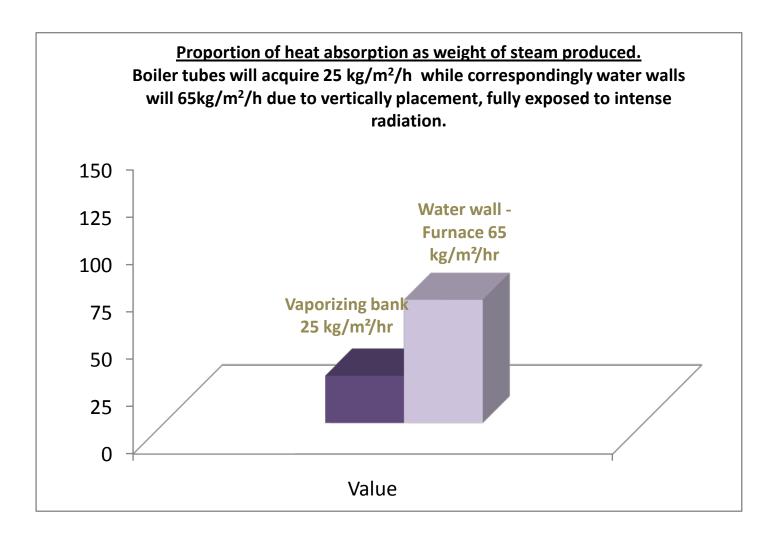
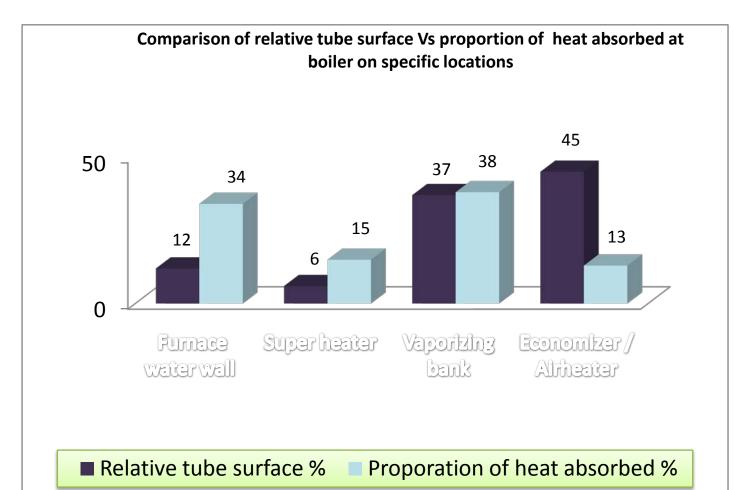
PSST ANNUAL CONVENTION 2014 LAHORE Boiler Furnace, Capacity & Performance Assessment

<u>By</u>

Mohammad Sarfaraz Khan General Manager (Technical) Kamalia Sugar Mills Limited Kamalia, District T. T. Singh

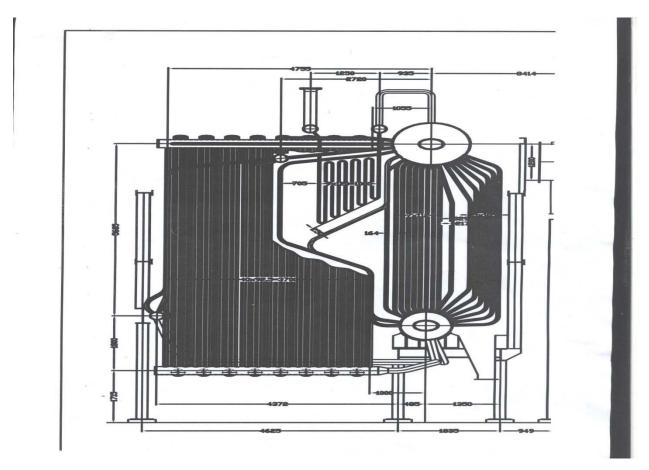
(RATED: BEST PAPER IN ENGINEERING 48TH CONVENTION)

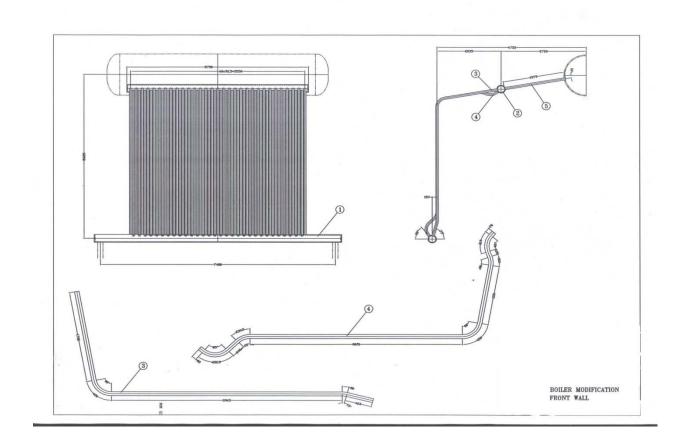

Introduction

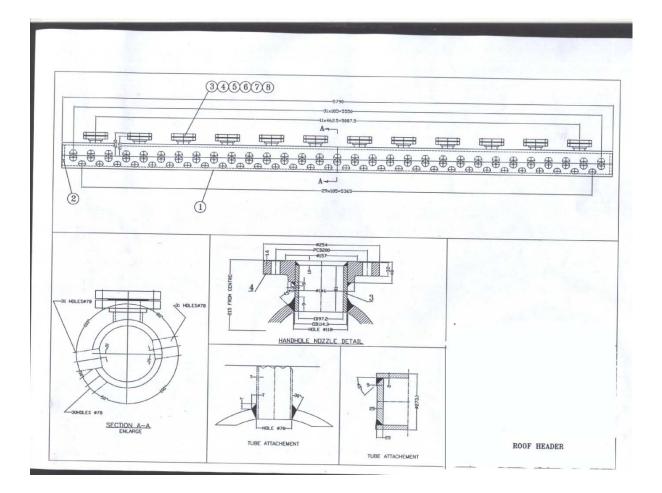

- By & large, when the term opportunities for boiler efficiency is being discuss, heat recovery devices, reduction in flue gas temperatures & protection of steam leakages are generally matter of concerns. However, furnace itself a potential vicinity which can contribute to greater extent to enhance boiler capacity with efficiency through radiation heat transfer.
- Furnace heating surface comprises on water wall (generation tubes) which have 12 21% share of the overall boiler heating surface. Although, heat absorption can be realized from 27 34 % of liberated energy.
- Principally, grate area, furnace volume & heat release rate are the core aspects taking in to account when capacity modifications under taken.
- Basically, water walls (generation tubes) use to perform bigger generation with small surface area due to the principle of greater temperature difference ΔT between two mediums.
- Potential availability of intense radiation & enormous absorbent property of water walls, 10

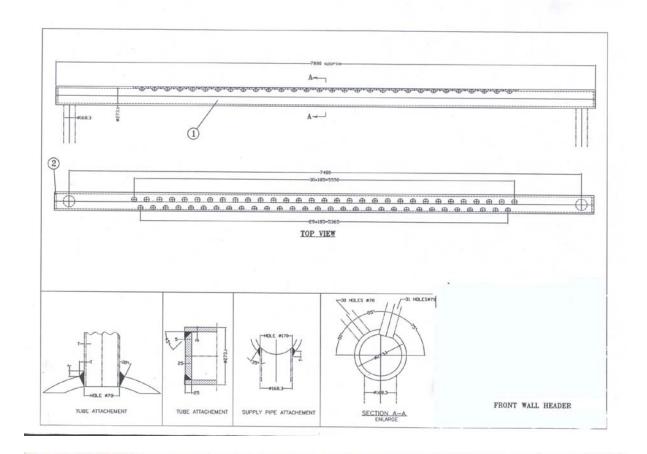
 15 % capacity rise can be attained with 30 49% additional heating surface on the available bagasse fired furnaces depends on design permissibility.
- The term furnace is the space between the grate, side walls, front wall & rear wall. However, combustion chamber includes furnace & free space traversed by the gases between leaving the furnace & reaching the boiler tubes.
- Combustion efficiency is the measure of how effectively the heat content of fuel is transferred in the burning process & determined to know the CO_2 concentration ranges between 10 12 %. Preheating air which realizes the 60% impact on the greater side of combustion temperature.

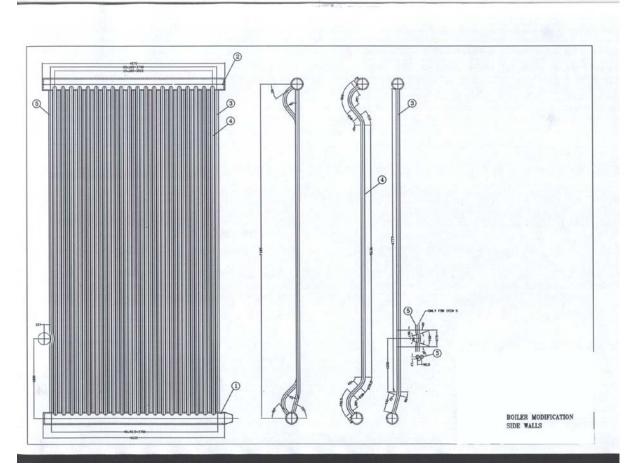
Characteristics;


•	Combustion rate	220,000 – 260,000 Kcal/M ³ /Hr
•	Evaporation rate Vs Grate area	2162 – 2500 Kg/M ² /Hr
•	Evaporation rate Vs Furnace volume	195 Kg/M ³ /Hr
•	Heating surface with respect to boiler	12 – 25 % (Design aspect)
•	Temperature range	900 – 1050 ^o C



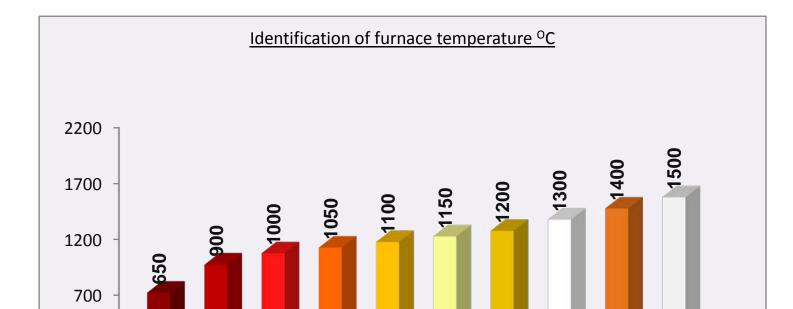



Modified activities


• After assessment of grate area, furnace volume & heat release rate, designed modifications were under taken in order to ensure permissible safe operational limits in the following manner.

Case Study/Implementation

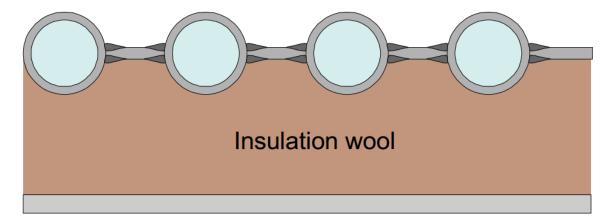
Type of boiler


FCB (Spreader – Stocker) bagasse fired

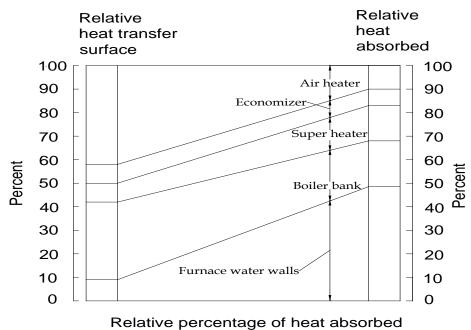
- Working parameters
- 24 Bar / 330 \pm 10 $^{\rm o}{\rm C}$

•	Initial capacity	34 TPH
•	Capacity enhancement	40 - 42 TPH
•	H.S (original) Furnace/Over all boiler	251M ² / 1005M ²
•	H.S Enhancement	123M ² at furnace
•	Modified H.S (Furnace/Over all)	374M ² / 1128 M ²
•	Impact furnace /Over all from original	49 / 10.90 %
•	Modified H.S w.r.t. boiler	8.18 % (From 25 – 33.18)
•	Capacity enhanced	6 – 8 TPH
•	Grate area	22 M ² (Same)
•	Furnace volume	150M ³ (Same)
•	Temperature rise	7-10 ^o C at super heater

Results & Discussion


- It's imperative from the case study, there is proved potential in terms of capacity & efficiency enhancement. These modifications are especially fruitful for existing boilers have capacities 30 – 80 TPH.
- Due to the addition of 123 M² heating surface at furnace, radiation absorption increased by 7.2%. It's evident that around 10 15 % capacity can be attainable with these sorts of modifications in the existing boilers to ensure safe operations.
- 3. Super heater, heating surface raised by 8 % to meet additional capacity generation.
- 4 Furnace temperature is one of the significant parameter to analyze the performance during operation. This was remained in the range of 902 972 $^{\circ}$ C. A handy reflection can be assessed with flame identification such as,

Results & Discussion


- Application of re-injection nozzles which contributed to re-inject the unburnt particles again to furnace for ultimate combustion, a value added aspect regarding combustion.
- Flame length significantly controlled through optimum air combination. Efforts being made to restrict it 7 8 meter height. However, gases below 7 meter & particularly 5 meter would not completely burnt on reaching the cold water tubes also effects the combustion, resulting formation of CO in the combustion gases. This further translate loss of 4.36% of calorific value of bagasse/unit formation of CO
- For suspended combustion, air requirements as follows,
 - a) Primary air or under grate 86%
 - b) Secondary for distribution 6.5%
 - c) For turbulence above grate 7.5%
- Primary or under grate air which is 86% of total requirement supplied through 4-5 mm small holes from grate elements. This area of holes should be @ 3 5 % of the total furnace grate area.
- Deposition of clinker over grate elements having inverse effect on primary air flow. Therefore, these holes re-drilled from 4 - 8 mm Ø to overcome the operational inconsistencies & subsequent meets required combustion.
- O_2 remained in the range of 3 4.7% on capacity load.

• Induction of membrane wall, a value added aspect, consists of tubes which use to weld together separated by a flat iron strip, called the membranes. They act as fins to increase the heat transfer. They also form a continues, rigid & pressure - tight construction for furnace.

Outer wall

Bench mark profile

through heat transfer of bagasse fired boilers

• Furnace modifications can contribute 7.2% rise in heat absorption which subsequently increase generation capacity 6 – 8 TPH by virtue of potential furnace radiations. The activity facilitated the safe limits of boiler operation.

Acknowledgement

 Author is thankful to the management of Kamalia Sugar Mills limited particularly Mr. Maqsood Anwar Qureshi (General Manager) for their kind approval, valuable advise & support. Here, I am acknowledging the design contribution made by Mr. Imdad Shah during activity.